Библиотека knigago >> Науки естественные >> Математика >> Геометрия: Планиметрия в тезисах и решениях. 9 класс


СЛУЧАЙНЫЙ КОММЕНТАРИЙ

# 920, книга: Бык в загоне
автор: Андрей Воронин

"Бык в загоне" - захватывающий боевик, который держит читателя в напряжении от начала до конца. Автор Андрей Воронин создает неотразимого и безжалостного главного героя, противостоящего опасным врагам и смертельным интригам. Главный герой, Александр "Бык" Ковалев, - бывший военный, вынужденный скрываться от своего бывшего командира, который предал его. Преследуемый убийцами, Бык вынужден постоянно находиться в движении, пытаясь раскрыть заговор против него. Повествование...

Андрей Николаевич Павлов - Геометрия: Планиметрия в тезисах и решениях. 9 класс

Геометрия: Планиметрия в тезисах и решениях. 9 класс
Книга - Геометрия: Планиметрия в тезисах и решениях. 9 класс.  Андрей Николаевич Павлов  - прочитать полностью в библиотеке КнигаГо
Название:
Геометрия: Планиметрия в тезисах и решениях. 9 класс
Андрей Николаевич Павлов

Жанр:

Математика

Изадано в серии:

неизвестно

Издательство:

неизвестно

Год издания:

-

ISBN:

неизвестно

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "Геометрия: Планиметрия в тезисах и решениях. 9 класс"

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.

Материалы пособия соответствуют учебной программе школьного курса геометрии.

Для учителей и учащихся 9-х классов.

Читаем онлайн "Геометрия: Планиметрия в тезисах и решениях. 9 класс" (ознакомительный отрывок). [Страница - 3]

четырёхугольник – параллелограмм». Безусловно, верно и обратное утверждение: «у параллелограмма противоположные стороны равны». Иными словами, равенство противоположных сторон является не только свойством, но и признаком параллелограмма.

Свойство фигуры, которое является одновременно и её признаком, называется характеристическим свойством (критерием) данной геометрической фигуры. В принципе, любое характеристическое свойство фигуры можно принять за её определение.

Иногда для удобства выделяют два частных случая теорем – следствие и лемму. Следствие – это утверждение, непосредственно вытекающее из теоремы. Лемма – это вспомогательное утверждение, используемое при доказательстве основной теоремы.

Множество всех неопределяемых понятий и отношений, аксиом и теорем называют аксиоматической теорией. Аксиоматическая теория, построенная на основе девяти приведённых аксиом, называется евклидовой.


Несколько дополнительных сведений по аксиоматическому подходу в геометрии. Система аксиом геометрии подбирается не произвольным образом. К ней предъявляются три основных требования: независимости, непротиворечивости и полноты.

Система аксиом называется независимой, если ни одну из аксиом нельзя вывести как теорему из других аксиом (тогда данная аксиома была бы лишней).

Система аксиом называется непротиворечивой, если из неё нельзя вывести две теоремы, которые противоречат друг другу.

Систему аксиом называют полной, если какое бы утверждение о свойстве той или иной геометрической фигуры мы ни сформулировали, всегда можно установить – истинно оно или ложно.

Приведённая выше система аксиом евклидовой геометрии удовлетворяет всем трём требованиям (доказано А. В. Погореловым).

Помимо евклидовой существуют и другие аксиоматические теории (неевклидовы геометрии). Например, если девятую аксиому евклидовой геометрии заменить на её отрицание («Через точку, не лежащую на прямой, можно провести более одной прямой, параллельной данной»), а остальные оставить без изменения, получим планиметрию Лобачевского. Тогда будут доказаны неожиданные для нас утверждения: «Сумма углов в треугольнике меньше двух прямых», «существуют треугольники, около которых нельзя описать окружность», «не существует подобных треугольников» и многие другие.

Изменяя систему аксиом, а также меняя неопределяемые понятия и отношения, мы будем получать другие неевклидовы геометрии (сферическую, эллиптическую и так далее).

Помимо аксиоматического, в геометрии широко распространён аналитический подход. Его суть состоит в том, что на плоскости вводится система координат и каждой точке ставится в соответствие пара чисел (х; у) – её координаты. Благодаря этому удаётся записывать уравнения различных фигур (прямых, окружностей и так далее), изучать их свойства. Введение декартовой прямоугольной системы координат и применение алгебраического аппарата нередко позволяют легче решать многие задачи по геометрии.

Обобщением (в определённом смысле) аналитического подхода в геометрии является векторный подход. Разница состоит в том, что на плоскости вводится векторная (аффинная) система координат, причём два базисных вектора не обязательно перпендикулярны друг другу и к тому же могут различаться по длине. Введение векторной системы координат также нередко позволяет быстрее и проще решать целый ряд геометрических задач.

В высшей геометрии весьма распространён групповой подход. Группой называется непустое множество М, на котором определена некоторая операция*, причём выполняются следующие условия:

1) для любых элементов а, в, с из М(а*в)*с = а*(в*с):

2) существует элемент е из М, такой, что а*е = е*а = а:

3) для любого элемента а существует элемент а-1, что а*а-1= а-1*а = е.

В геометрии можно выделить множество групп, например, группу перемещений, группу преобразования подобия. Самой важной группой в планиметрии является группа перемещений плоскости, так как с её помощью вводится понятие равных фигур. Равные фигуры обладают одинаковыми геометрическими свойствами, которые не изменяются (инвариантны) под действием перемещений. В целом можно сказать, что каждая группа преобразований задаёт свою геометрию, в которой изучаются свойства фигур, инвариантные (неизменяемые) относительно данной группы преобразований.

Инварианты группы перемещений (и других групп) «невидимо» присутствуют при решении задач методом --">

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.