Библиотека knigago >> Науки естественные >> Химия >> Неорганическая химия


СЛУЧАЙНЫЙ КОММЕНТАРИЙ

# 2673, книга: Прочь наркотики!
автор: Владимир Жириновский

Публицистика Книга «Прочь наркотики!» Владимира Жириновского является актуальным и острым произведением, посвященным одной из самых серьезных проблем нашего времени - наркомании. В этой книге автор поднимает ряд важных вопросов, касающихся причин употребления наркотиков, их пагубного воздействия на здоровье, психику и общественную жизнь. Жириновский приводит статистические данные, примеры из жизни и истории, чтобы подкрепить свои аргументы и привлечь внимание читателя к этой проблеме. Одна...

СЛУЧАЙНАЯ КНИГА

М В Дроздова , А А Дроздов - Неорганическая химия

Неорганическая химия
Книга - Неорганическая химия.  М В Дроздова , А А Дроздов  - прочитать полностью в библиотеке КнигаГо
Название:
Неорганическая химия
М В Дроздова , А А Дроздов

Жанр:

Химия

Изадано в серии:

Шпаргалки

Издательство:

Эксмо

Год издания:

ISBN:

978-5-699-26628-9

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "Неорганическая химия"

Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом.

Читаем онлайн "Неорганическая химия" (ознакомительный отрывок). [Страница - 2]

стр.
артериальное давление) использу–ются врачом для определения состояния больного.

Переход системы из одного состояния в другое называется процессом.

В результате процесса состояние системы и термоди–намические переменные изменяются. Если обозначить значение термодинамической переменной в начальном состоянии через Х1 ,ав конечном – X2 , то изменение этой переменной соответственно равно ΔX = X2 – X1 и на–зывается приращением термодинамической перемен–ной X. Приращение, взятое с обратным знаком, называ–ется убылью переменной X.

Внутренняя энергия системы Е – одна из термодинами–ческих функций состояния. Важная особенность функций со–стояния – их независимость от способа достижения данно–го состояния системы.

Изменение внутренней энергии системы ΔE обуслов–лено работой W, которая совершается при взаимодейст–вии системы со средой, и обмен теплотой Q между средой и системой, отношение между этими величинами состав–ляет содержание первого начала термодинамики.

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q, получен–ной системой, плюс работа W, совершенная над системой в этом процессе:

ΔE = Q + W.

В биологических системах теплота обычно отдается системой во внешнюю среду, а работа совершается системой за счет убыли внутренней энергии. Матема–тическую запись первого начала термодинамики удоб–но представить в виде:

-ΔE = –Q – W.

Все величины в приведенных формулах измеряются в джоулях (Дж).

3. Первое начало термодинамики

Первое начало термодинамики относится к числу фун–даментальных законов природы, которые не могут быть выведены из каких-то других законов. Его справедливость доказывают многочисленные эксперименты, в частности неудачные попытки построить вечный двигатель первого рода, т. е. такую машину, которая смогла бы как угодно долго совершать работу без подвода энергии извне.

В зависимости от условий протекания процесса в сис–теме используют различные функции состояния, которые выводят из первого начала термодинамики. При этом вместо сложных биологических систем для получения выводов о превращениях массы и энергии используют упрощенные модели. Давление в системе при этом под–держивается постоянным, оно равно внешнему давле–нию. Такие процессы, протекающие при р = const, назы–ваются изобарными. Работа расширения, совершае-мая при изобарном процессе, как известно, равна:

W = –ρΔV,

где ΔV – приращение объема системы, равное раз–ности объемов в состояниях 2 и 1.

Подставляя работу расширения в математическое выражение первого начала и проведя несложные пре–образования, получаем:

Qρ = ΔE + pΔV = (E2 + ρV2) – (E1 + ρΔV1)

где Qρ – теплота изобарного процесса;

1, 2 – индексы, относящиеся к началу и концу процесса.

Величина (E+ pV) – функция состояния системы, обоз–начаемая через Н и называемая энтальпией:

H = E + ρV.

Соответственно, выражение можно записать в виде:

Qp = Н2 – Н1 = ΔH.

Из данного выражения следует, что энтальпия – функция состояния, приращение которой равно теп–лоте, полученной системой в изобарном процессе.

Измерение приращения энтальпии в некотором про–цессе может быть осуществлено при проведении это–го процесса в калориметре при постоянном давлении. Именно так проводили свои эксперименты А. М. Ла–вуазье и П. С. Лаплас, изучая энергетику метаболиз–ма в живом организме.

В тех случаях, когда изменение состояния системы происходит при постоянном объеме, процесс называ–ется изохорным. Изменение объема AV при этом рав–но нулю, и в соответствии с формулой работа расшире–ния W = 0. Тогда из математического выражения первого начала термодинамики следует:

Qv = ΔE.

Из вышеуказанного соотношения вытекает термо–динамическое определение: внутренняя энергия – функция состояния, приращение которой равно теп–лоте QV , полученной системой в изохорном процессе. Следовательно, изменение внутренней энергии в не–котором процессе может быть измерено при проведе–нии этого процесса в калориметре при постоянном объеме. Следует, что при ρ = const приращения внут–ренней энергии и энтальпии связаны соотношением:

ΔH = ΔE + ρΔV.

4. Закон Гесса

Раздел термодинамики, изучающий превращения энер–гии при химических реакциях, называется химической термодинамикой. Уравнение реакции, для которой ука–зываются соответствующие этой реакции изменения внут–ренней энергии ΔE, энтальпии ΔH или какой-либо --">
стр.

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.