Библиотека knigago >> Наука, Образование: прочее >> Научно-популярная и научно-познавательная литература >> Нанонауки. Невидимая революция


СЛУЧАЙНЫЙ КОММЕНТАРИЙ

# 1682, книга: Предатель при Каменном дворе (ЛП)
автор: Джордан Ривет

"Предатель при Каменном дворе" Джордана Ривета - захватывающая и захватывающая история, которая захватывает читателя с первых страниц. Это прекрасно проработанный фэнтезийный мир с захватывающими персонажами и сложным сюжетом. История вращается вокруг Арионды, молодой женщины, которая оказывается втянутой в опасный заговор против ее королевства. Она должна объединиться с некогда врагом, чтобы раскрыть правду и спасти свой народ. Ривет создала живых и запоминающихся персонажей....

Кристиан Жоаким , Лоранс Плевер - Нанонауки. Невидимая революция

Нанонауки. Невидимая революция
Книга - Нанонауки. Невидимая революция .  Кристиан Жоаким , Лоранс Плевер  - прочитать полностью в библиотеке КнигаГо
Название:
Нанонауки. Невидимая революция
Кристиан Жоаким , Лоранс Плевер

Жанр:

Научно-популярная и научно-познавательная литература

Изадано в серии:

Galileo

Издательство:

КоЛибри

Год издания:

ISBN:

978-5-389-00631-7

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "Нанонауки. Невидимая революция "

Кристиан Жоаким — один из известнейших специалистов по физике твердого тела, директор Центра структурных исследований и разработки новых материалов (CEMES) в Тулузе. Ответственный руководитель группы Nanosciences. Вместе с журналисткой Лоранс Плевер он рассказывает о том, что такое наномир, как выглядят его обитатели, чем отличаются нанонауки от нанотехнологий и что они сулят человечеству в ближайшем будущем.


Читаем онлайн "Нанонауки. Невидимая революция ". Главная страница.

Кристиан Жоаким Лоранс Плевер НАНОНАУКИ. НЕВИДИМАЯ РЕВОЛЮЦИЯ

Введение Чудеса вокруг нас

Авторы книги приглашают читателя погрузиться в бесконечно малое, чтобы, донырнув до самого «дна», развлечься игрой с одиночными атомами или отдельными молекулами. У всех нас нет никакого опыта обращения с такими объектами, как с разрозненными единицами: уж слишком они малы, чтобы перебирать их поодиночке. В самом деле, каковы размеры атома? Их приходится измерять в десятимиллиардных долях метра, то есть в десятимиллионных долях миллиметра. А как должен вырасти атом, чтобы мы, скажем, или вы, наш читатель, стали величиной с планету? Так вот, тогда атом был бы шариком с диаметром в миллиметр. А если бы он стал величиной с комнату, то мы или вы доставали бы головой до Солнца. Атом столь мал, что его нельзя увидеть не только невооруженным глазом, но и в любой самый мощный оптический микроскоп.

Однако в 1981 году ученые изобрели микроскоп нового типа, работавший на основе туннельного эффекта. Этот новый прибор позволял выводить изображения одиночных молекул и атомов на экран компьютерного монитора. Справедливости ради стоит упомянуть, что первые изображения атомов на люминесцентных экранах электронно-лучевых трубок были получены много раньше, еще в 1950-е годы, на так называемых «электронных» микроскопах. Однако туннельный микроскоп отличался тем, что с его помощью можно было не только увидеть атом, но и «дотронуться» до него — и даже, надавив на атом малюсенькой иголочкой, переместить его туда, куда вам заблагорассудится. Обыкновенно, когда вы трогаете какую-то вещь, миллиарды атомов ваших пальцев входят «в соприкосновение» с миллиардами ее атомов. Но игла туннельного микроскопа настолько тонка, что способна прикоснуться только к одному атому. Значит, если дотронуться сначала до одного атома, потом той же иглой придвинуть к этому атому еще один, потом еще один и так далее, то за некоторое время и через некоторое количество шагов можно получить небывалые сочетания атомов, в том числе и сильно непохожие своей «архитектурой» на те атомные скопления, которые встречаются в «обычной», нетронутой человеком, природе. Иначе говоря, эта игла оказывается продолжением пальцев ученого или инженера.

Так что туннельный микроскоп вносит существенные перемены — или некоторую сумятицу — в наши взаимоотношения с веществом, с материей. Он превращается в рабочий инструмент, «орудие физического труда», и тогда становится возможным совершенно новый технологический подход: обращение с атомами как с кирпичами и созидание из атомов все более величественных сооружений, только не по камешку или кирпичику, а атом за атомом. Вплоть до построения крошечной машины, которая, однако, будет способна работать примерно так же, как и механизмы привычных нам размеров. Причем этот новый подход к конструированию аппаратуры по праву можно назвать восходящим — по направлению он уж точно противоположен давно привычной миниатюризации.

Представим себе, например, что мы построили куб в миллион раз меньший песчинки, с ребром длиной примерно в один нанометр, то есть в миллиардную долю метра. Чтобы соорудить такой нанокуб, понадобится примерно шестьдесят атомов. И это возможно при помощи туннельного микроскопа и «нанотехнологии» — так называют «восходящее» созидание из отдельных атомов: атом приставляется к атому, потом на них ставится еще один и так далее, пока не будет получен желанный результат. Прибегнув к более привычному «нисходящему» созиданию, то есть миниатюризации, можно получить тот же нанокуб — достаточно убрать из кубика с ребром в один сантиметр сто миллиардов миллиардов атомов. Всего-то.

Следовательно, нанотехнология, по сути дела, есть способ (еще один) сбережения материальных ресурсов. Со временем, однако, определение нанотехнологии стало более гибким или, лучше сказать, расплывчатым: теперь уже чаще говорят не о нанотехнологии, но о нанотехнологиях, и это множественное число объемлет не только умение манипулировать материей, передвигая атом за атомом, но и все прочие приемы, позволяющие создавать объекты с точностью, измеряемой нанометрами, пусть даже в производственном процессе задействованы не считаные единицы, а многие миллионы и миллиарды атомов.

Но как же это нас угораздило, начав с нанотехнологии как таковой, то есть с разработки все новых и новых приемов манипуляции --">

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.