Библиотека knigago >> Наука, Образование: прочее >> Медицина >> ФАРМАКОЛОГИЯ ВЗАИМОДЕЙСТВИЯ РЕГУЛЯТОРНЫХ ПЕПТИДНЫХ СИСТЕМ ГОЛОВНОГО МОЗГА В МЕХАНИЗМАХ ПОДКРЕПЛЕНИЯ


Более серьёзных работ, чем у Джозефа ФАРРЕЛЛА, найти в начале XXI-го века просто - НЕ у КОГО. Сплошное кругом ж-вьё и жуткая ложь. Становится понятным, кто ведёт на планете ДО СЕГО ДНЯ войну против людей ! Ведёт её, причём, планетарно UBERMENSCH'ная НЕЛЮДЬ, полученная из homunculus'ов и "Германии туманной - учёности плоды", типа Faust. Конечно же, не немецкими, а известно чьей Ветхости ! Причём, прикрываясь талантливейшими учёными Германцами - Белые индо-арийцы как и мы - Русские, из...

Александр Анатольевич Смирнов - ФАРМАКОЛОГИЯ ВЗАИМОДЕЙСТВИЯ РЕГУЛЯТОРНЫХ ПЕПТИДНЫХ СИСТЕМ ГОЛОВНОГО МОЗГА В МЕХАНИЗМАХ ПОДКРЕПЛЕНИЯ

ФАРМАКОЛОГИЯ ВЗАИМОДЕЙСТВИЯ РЕГУЛЯТОРНЫХ ПЕПТИДНЫХ СИСТЕМ ГОЛОВНОГО МОЗГА В МЕХАНИЗМАХ ПОДКРЕПЛЕНИЯ
Книга - ФАРМАКОЛОГИЯ ВЗАИМОДЕЙСТВИЯ РЕГУЛЯТОРНЫХ ПЕПТИДНЫХ СИСТЕМ ГОЛОВНОГО МОЗГА В МЕХАНИЗМАХ ПОДКРЕПЛЕНИЯ.  Александр Анатольевич Смирнов  - прочитать полностью в библиотеке КнигаГо
Название:
ФАРМАКОЛОГИЯ ВЗАИМОДЕЙСТВИЯ РЕГУЛЯТОРНЫХ ПЕПТИДНЫХ СИСТЕМ ГОЛОВНОГО МОЗГА В МЕХАНИЗМАХ ПОДКРЕПЛЕНИЯ
Александр Анатольевич Смирнов

Жанр:

Медицина

Изадано в серии:

неизвестно

Издательство:

неизвестно

Год издания:

ISBN:

неизвестно

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "ФАРМАКОЛОГИЯ ВЗАИМОДЕЙСТВИЯ РЕГУЛЯТОРНЫХ ПЕПТИДНЫХ СИСТЕМ ГОЛОВНОГО МОЗГА В МЕХАНИЗМАХ ПОДКРЕПЛЕНИЯ"

Данные зарубежной литературы, наши многочисленные исследования грелиновой и орексиновой системы, в т.ч. во взаимодействие с кортиколибериновой системой позволяют сделать предположение, что грелин, орексин и их антагонисты могут направленно влиять на кортиколибериновые (стресс-зависимые) механизмы центрального действия психостимуляторов. В связи с этим антагонисты грелина и антагонисты орексина могут рассматриваться как возможные перспективные средства профилактики и лечения вызванных стрессом и окружающими стимулами среды приема аддиктивных средств. Также интересна возможность рассмотрения всех трех систем, как единого механизма, учавствующий в возникновении наркотической зависимости.

Читаем онлайн "ФАРМАКОЛОГИЯ ВЗАИМОДЕЙСТВИЯ РЕГУЛЯТОРНЫХ ПЕПТИДНЫХ СИСТЕМ ГОЛОВНОГО МОЗГА В МЕХАНИЗМАХ ПОДКРЕПЛЕНИЯ". [Страница - 40]

Larsson, A. Voluntary ethanol intake increases extracellular acetylcholine levels in the ventral tegmental area in the rat. /Larsson, A., Edstrom, L., Svensson, L., Soderpalm, B., Engel, J.A. // Alcohol and Alcoholism 40 (5) - 2005 – Р.349–358.

Laviolette S.R. GABAA receptors in the ventral tegmental area control bidirectional reward signalling between dopaminergic and non-dopamingeric neural motivational systems. /Laviolette S.R., van der Kooy D. // Eur. J. Neurosci. 2001. V.13. P.1009–1015.

Le Doux J.E. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. /Le Doux J.E., Iwata J., Cicchetti P., Reis D.J. // J. Neurosci 1988; 8:2517–2529.

Lelas S. Anxiolytic-like effects of the corticotropin-releasing factor1 (CRF1) antagonist DMP904 [4-(3-pentylamino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-pyrazolo-[1,5-a]-pyrimidine] administered acutely or chronically at doses occupying central CRF1 receptors in rats. /Lelas S., Wong H., Li Y.W. et al. // J. Pharmacol. Exp. Ther. 2004. V. 309. P.293–302.

Lewis K. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. /Lewis K., Li C., Perrin M.H. et al. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P.7570–7575.

Li Y.W. Receptor occupancy of nonpeptide corticotropinreleasing factor 1 antagonist DMP696: correlation with drug exposure and anxiolytic efficacy. /Li Y.W., Hill G., Wong H. et al. // J. Pharmacol. Exp. Ther. 2003. V. 305. P.86–96.

Li, Y. Hypocretin/Orexin exites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. /Y. Li, X. B. Gao, T. Sakurai et al. // Neuron. – 2002. – Vol. 36. – P.1169–1181.

Li, Y. Orexin in the midline thaiamus are involved in the expression of conditioned place aversion to morphine withdrawal. /Y. Li, H. Wang, K. Qi et al. // Physiology and Behavior. – 2011 – Vol.102. – P.42–50.

Liaw C.W. Cloning and characterization of the human corticotropin-releasing factor-2 receptor complementary deoxyribonucleic acid. /Liaw C.W., Lovenberg T.W., Barry G. et al. // Endocrinology. 1996. V. 137. P.72–77.

Lin, L. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin receptor 2 gene. /L. Lin, J. Faraco, R. Li et al. // Cell. – 1999. – Vol.98. – P.365–376.

Liu, Z. W. Adenosine inhibits activity of hypocretin/orexin neurons by the Al receptor in the lateral hypothalamus: a possible sleep-promoting effect. /Z. W. Liu, X. B. Gao. // J. Neurophysiol. – 2007. – Vol.97. – P.837–848.

Löf, E. Nicotinic acetylcholine receptors in the ventral tegmental area mediate the dopamine activating and reinforcing properties of ethanol cues. /Olausson, P., deBejczy, A., Stomberg, R., McIntosh, J.M., Taylor, J.R., Soderpalm, B. // Psychopharmacology (Berl) 195 (3) – 2007 – Р.333–343.

Lovenberg T.W. CRF2 alpha and CRF2 beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. /Lovenberg T.W., Chalmers D.T., Liu C., De Souza E.B. // Endocrinology. 1995. V. 136. P.4139–4142.

Lu, X. Y. Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. /X. Y. Lu, D. Bagnol, S. Burke et al. // Horm. Behav. –2000. – Vol.37. – P.1529–1533.

Lutter M. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. / Lutter M., Sakata I., Osborne-Lawrence S., Rovinsky S.A., Anderson J.G., et al.// Nat Neurosci. 2008; 11:752–753. [PubMed]

Marcus, J. N. Differential expression of orexin receptors 1 and 2 in the rat brain. /J. N. Marcus, C. G. Aschkenasi, C. E. Lee et al. // J. Comp. Neurol. – 2001. – Vol.435. – P.6–25.

Martin G. Interaction of the hypocretins with neurotransmitters in the nucleus accumbens. / Martin G., Fabre V., Siggins G.R., de Lecea L. // RegulPept. 2002; 104:111–7. []

Matsuki, T. Selective loss of GABA (B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. /T. Matsuki, M. Nomiyama, H. Takahira et al. // Proc. Nail. Acad. Sci. USA. – 2009. – Vol.106. – P.4459–4464.

McKee, S.A. Varenicline reduces alcohol self-administration in heavy-drinking smokers. /McKee, S.A., Harrison, E.L., O’Malley, S.S., Krishnan-Sarin, S., Shi, J., Tetrault, J.M., Picciotto, M.R., Petrakis, I.L., Estevez, N., Balchunas, E. // Biological Psychiatry 66 (2) – 2009 – Р.185–190.

Menzaghi F. Characterization of a novel and potent corticotropinreleasing factor antagonist in rats. /Menzaghi F., Howard R.L., Heinrichs S.C. et al // J. Pharmacol. Exp. Ther. 1994. V. 269. P.564–572.

Merali Z. Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. /Merali Z., McIntosh J., Kent P. et al. // J. Neurosci. 1998. V. 18. P.4758–4766.

Merlo Pich E. Corticotropin-releasing factor release from the mediobasal hypothalamus of the rat as measured by microdialysis. /Merlo Pich E., Koob G.F., Heilig M. et al. // Neuroscience. 1993. V. 55. P.695–707.

Mokrosinski, J. Modulation of the constitutive activity of the ghrelin receptor by use of pharmacological tools and mutagenesis. /Mokrosinski, J., Holst, B. // Methods in Enzymology484 – 2010 – Р.53–73.

Moreau J.L. Urocortin, a novel neuropeptide with anxiogenic-like properties. /Moreau J.L., Kilpatrick G., Jenck F. // NeuroReport. 1997. V. 8. P.1697–1701.

Mozid A.M. Ghrelin is released from rat hypothalamic explants and stimulates corticotrophin-releasing hormone and arginine-vasopressin. / Mozid A.M., Tringali G., Forsling M.L., Hendricks M.S., Ajodha S., et al. // HormMetab Res. 2003;35:455–459. [PubMed]

Myers R.D. Anatomical “circuitry” in the brain mediating alcohol drinking revealed by THP-reactive sites in the limbic system. /Myers R.D. // Alcohol 1990;7:449–459.

Naleid, A.M. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. /Naleid, A.M., Grace, M.K., Cummings, D.E., Levine, A.S. // Peptides 26 (11) – 2005 – Р.2274–2279.

Nambu, T. Distribution of orexin neurons in the adult rat brain. /T. Nambu, T. Sakurai, K. Mizukami et al. // Brain Res. – 1999 – Vol.827. – P.243–260.

Napier T.C. Opiod modulation of ventral pallidal inputs. /Napier T.C., Mitrovic I. // Ann. N.Y. Acad. Sci. 1999. V.87. P.176–201.

Nemeroff C.B. New vistas in neuropeptide research in neuropsychiatry: focus on corticotropin-releasing factor. /Nemeroff C.B. // Neuropsychopharmacology. 1992. V. 6. P.69–75.

Nestler E.J. Is there a common molecular pathway for addiction? /Nestler E.J. // Nat Neurosci 2005;8:1445–1449.

Nicola S.M. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. /Nicola S.M., Surmeier J., Malenka R.C. // Annu. Rev. Neurosci. 2000. V.23. P.185–215.

Nijsen M.J. The role of the CRH type 1 receptor in autonomic responses to

--">

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.