Библиотека knigago >> Детская литература >> Детская образовательная литература >> Векторные свойства гравитационного потенциала

Петр Путенихин - Векторные свойства гравитационного потенциала

Векторные свойства гравитационного потенциала
Книга - Векторные свойства гравитационного потенциала.  Петр Путенихин  - прочитать полностью в библиотеке КнигаГо
Название:
Векторные свойства гравитационного потенциала
Петр Путенихин

Жанр:

Детская образовательная литература, Физика, Математика

Изадано в серии:

неизвестно

Издательство:

SelfPub

Год издания:

ISBN:

неизвестно

Отзывы:

Комментировать

Рейтинг:

Поделись книгой с друзьями!

Помощь сайту: донат на оплату сервера

Краткое содержание книги "Векторные свойства гравитационного потенциала"

Приведено доказательство векторной природы гравитационного потенциала, согласно которой гравитационный потенциал в любой точке бесконечной Вселенной равен нулю. Напротив, согласно скалярным представлениям о гравитационном потенциале, в стационарной Вселенной гравитационный потенциал равен бесконечности, причём в любой точке пространства. Однако этот потенциал входит в уравнение всемирного тяготения, имеющего явно векторный характер. Закон неявно содержит в себе не только ускорение свободного падения, векторную величину, но и формирующий его гравитационный потенциал, который автоматически получает статус вектора.


Читаем онлайн "Векторные свойства гравитационного потенциала". Главная страница.

стр.

Петр Путенихин Векторные свойства гравитационного потенциала

Гравитационный потенциал

Гравитационные взаимодействия характеризуются двумя основными понятиями – силой гравитационного притяжения и гравитационным потенциалом. Хотя очевидно, что сила гравитационного притяжения является вектором, уравнение закона всемирного тяготения, тем не менее, записывают в виде скаляра. В связи с этим отметим одно интересное наше наблюдение. Если какая-то величина может иметь отрицательное значение, то такую величину определённо можно считать вектором. В частности, закон всемирного тяготения иногда пишут со знаком минус


Книгаго: Векторные свойства гравитационного потенциала. Иллюстрация № 1
При этом нередко уточняется, что знак минус означает притяжение. Логически это легко объяснимо. Если масса находится в начале координат, то все положительные векторы направлены "наружу", от этого начала. Но сила притяжения направлена извне в сторону тела, в сторону начала координат. То есть, её можно рассматривать как отрицательный скаляр, так и как вектор, направленный в сторону начала координат. Но если эта величина, сила является вектором по указанной выше минусовой причине, записать это можно в следующей векторной форме


Книгаго: Векторные свойства гравитационного потенциала. Иллюстрация № 2
Знак минуса отбрасываем, поскольку направление силы теперь определяется вектором. Поскольку в записи под знаком вектора имеются константы, их можно вынести


Книгаго: Векторные свойства гравитационного потенциала. Иллюстрация № 3
Запись, как видим, приобрела более явный векторный вид. Однако в знаменателе присутствует квадрат вектора или, по меньшей мере, произведение вектора на самого себя


Книгаго: Векторные свойства гравитационного потенциала. Иллюстрация № 4
Известны два произведения векторов: векторное и скалярное. В нашем случае скалярное произведение неприменимо, поскольку его результат – скаляр, то есть, уравнение перестаёт быть векторным. Но и векторное произведение нас не устраивает, поскольку в этом случае направление вектора уже не совпадает с направлением силы. Выход только один: один из одинаковых сомножителей в знаменателе должен потерять статус вектора


Книгаго: Векторные свойства гравитационного потенциала. Иллюстрация № 5
На первый взгляд, это ничем не обоснованный произвол в записи уравнения. В сущности, величиной вектора мы можем считать и квадрат скаляра. Но пока рассмотрим другой вариант, ведущий к интересным выводам. Перепишем уравнение ещё раз с учетом разделения сомножителей


Книгаго: Векторные свойства гравитационного потенциала. Иллюстрация № 6
(1)

Замечаем, что левый сомножитель в последнем равенстве выглядит как традиционный гравитационный потенциал тела M, но записанный в векторной форме. Насколько это оправдано? Почему не обозначить вектором второй, правый сомножитель, а первый оставить в прежней, не векторной форме? Конечно, это возможно и до данного момента используется повсеместно, но в этом случае векторная форма второго сомножителя приобретает весьма неясную форму. А вот векторная форма гравитационного потенциала приобретает весьма осмысленный вид с далеко идущими последствиями.

Действительно, сила притяжения двух тел пропорциональна модулю такого векторного гравитационного потенциала и направлена строго по соединяющей два тела линии. Иначе говоря, налицо признаки вектора: величина (длина) и направление. Более того, если поменять местами массы, то получим


Книгаго: Векторные свойства гравитационного потенциала. Иллюстрация № 7
стр.

Оставить комментарий:


Ваш e-mail является приватным и не будет опубликован в комментарии.